

## **Electronic Air**



**Functionality**: The purpose of electronic air is to allow an operator to program a weld force (or pressure) into an individual weld schedule.

Fundamentally, spot welding is only a function of three simple variables: Current (a.k.a. "heat"), Time, and Force. On a traditional spot welder, only two of those variables are adjustable from programming the weld control; Current and Time. It is often left to the operator to determine and adjust the weld force by manually adjusting a pneumatic regulator. Charts are available to look up the appropriate force, then an operator needs to translate the force to PSI (pressure) using the diameter of the air cylinder, and finally the operator needs to set the regulator at the appropriate pressure for the material. A force gauge is often handy for calibration as well, because the weld head weight is not taken into account.



Electronic Air uses a pressure transducer and volume booster, allowing an operator to skip the steps laid out above and simply program the weld force. This feature is useful when production requires the frequent changing of materials or parts, or for welding single parts with variable thicknesses, or for factories where operators tend to forget to adjust the force settings.

If the welder is going to see the same parts 24/7/365, or has infrequent change-over, it makes less sense to spend the money for this option.



## OPTIMUM CONDITIONS SCHEDULES FOR SPOT WELDING LOW CARBON STEEL—SAE 1010

| DATA COMMON TO ALL CLASSES                                             |         |                  |                                               |                                                          | WELDING SET-UP FOR BEST            |                                   |                                       |                              | WELDING SET-UP FOR MEDIUM                                 |                                    |                                   |                                       | WELDING SET-UP FOR GOOD        |                                                           |                                    |                                   |                                  |                              |                                                           |
|------------------------------------------------------------------------|---------|------------------|-----------------------------------------------|----------------------------------------------------------|------------------------------------|-----------------------------------|---------------------------------------|------------------------------|-----------------------------------------------------------|------------------------------------|-----------------------------------|---------------------------------------|--------------------------------|-----------------------------------------------------------|------------------------------------|-----------------------------------|----------------------------------|------------------------------|-----------------------------------------------------------|
| OF SPOT WELDS                                                          |         |                  |                                               |                                                          | QUALITY—CLASS A WELDS              |                                   |                                       |                              | QUALITY—CLASS B WELDS                                     |                                    |                                   |                                       | QUALITY—CLASS C WELDS          |                                                           |                                    |                                   |                                  |                              |                                                           |
| Thick-<br>ness<br>of Each<br>of the<br>Two<br>Work<br>Pieces<br>inches | Diam. 8 | frode<br>& Shape | Min.<br>Weld<br>Spacing<br>(Note 4)<br>Inches | Min.<br>Con-<br>tacting<br>Overlap<br>(Note 6)<br>Inches | Weld<br>Time<br>(Note 7)<br>Cycles | Elec-<br>trode<br>Force<br>Pounds | Wold-<br>ing<br>Cur-<br>rent<br>Amps. | Diam.<br>of<br>Fused<br>Zone | Average<br>Tensile<br>Shear<br>Strength<br>±14%<br>Pounds | Weld<br>Time<br>(Note 7)<br>Cycles | Elec-<br>trode<br>Force<br>Pounds | Weld-<br>ing<br>Cur-<br>rent<br>Amps. | Diam. of Fused Zone  Dw Inches | Average<br>Tensile<br>Shear<br>Strength<br>±17%<br>Pounds | Weld<br>Time<br>(Note 7)<br>Cycles | Elec-<br>trode<br>Force<br>Pounds | Weld-<br>ing<br>Current<br>Amps. | Diam.<br>of<br>Fused<br>Zone | Average<br>Tensile<br>Shear<br>Strength<br>±20%<br>Pounds |
| .010                                                                   | 1/2     | 1/8              | 1/4                                           | 3/8                                                      | 4                                  | 200                               | 4000                                  | .13                          | 235                                                       | 5                                  | 130                               | 3700                                  | .12                            | 200                                                       | 15                                 | 65                                | 3000                             | .11                          | 160                                                       |
| .021                                                                   | 1/2     | 3/16             | 3/8                                           | 7/16                                                     | 6                                  | 300                               | 6100                                  | .17                          | 530                                                       | 10                                 | 200                               | 5100                                  | .16                            | 460                                                       | 22                                 | 100                               | 3800                             | .14                          | 390                                                       |
| .031                                                                   | 1/2     | 3/16             | 1/2                                           | 7/16                                                     | 8                                  | 400                               | 8000                                  | .21                          | 980                                                       | 15                                 | 275                               | 6300                                  | .20                            | 850                                                       | 29                                 | 135                               | 4700                             | .18                          | 790                                                       |
| .040                                                                   | 5/8     | 1/4              | 3/4                                           | 1/2                                                      | 10                                 | 500                               | 9200                                  | .23                          | 1305                                                      | 21                                 | 360                               | 7500                                  | .22                            | 1230                                                      | 38                                 | 180                               | 5600                             | .21                          | 1180                                                      |
| .050                                                                   | 5/8     | 1/4              | 7/8                                           | 9/16                                                     | 12                                 | 650                               | 10300                                 | .25                          | 1820                                                      | 24                                 | 410                               | 8000                                  | .23                            | 1700                                                      | 42                                 | 205                               | 6100                             | .22                          | 1600                                                      |
| .062                                                                   | 5/8     | 1/4              | 1                                             | 5/8                                                      | 14                                 | 800                               | 11600                                 | .27                          | 2350                                                      | 29                                 | 500                               | 9000                                  | .26                            | 2150                                                      | 48                                 | 250                               | 6800                             | .25                          | 2050                                                      |
| .078                                                                   | 5/8     | 5/16             | 1-1/8                                         | 11/16                                                    | 21                                 | 1100                              | 13300                                 | .31                          | 3225                                                      | 36                                 | 650                               | 10400                                 | .30                            | 3025                                                      | 58                                 | 325                               | 7900                             | .28                          | 2900                                                      |
| .094                                                                   | 5/8     | 5/16             | 1-1/4                                         | 3/4                                                      | 25                                 | 1300                              | 14700                                 | .34                          | 4100                                                      | 44                                 | 790                               | 11400                                 | .33                            | 3900                                                      | 66                                 | 390                               | 8800                             | .31                          | 3750                                                      |
| .109                                                                   | 7/8     | 3/8              | 1-5/16                                        | 13/16                                                    | 29                                 | 1600                              | 16100                                 | .37                          | 5300                                                      | 50                                 | 960                               | 12200                                 | .36                            | 5050                                                      | 72                                 | 480                               | 9500                             | .35                          | 4850                                                      |
| .125                                                                   | 7/8     | 3/8              | 1-1/2                                         | 7/8                                                      | 30                                 | 1800                              | 17500                                 | .40                          | 6900                                                      | 60                                 | 1140                              | 12900                                 | .39                            | 6500                                                      | 78                                 | 570                               | 10000                            | .37                          | 6150                                                      |

 Low Carbon Steel as hot rolled, pickled, and slightly oiled with an ultimate strength of 42,000 to 45,000 PSI Similar to SAE 1005—SAE 1010.

 Electrode Material is CMW\*3.
 Surface of steel is lightly oiled but free from grease, scale or dirt.
 Minimum weld spacing is that distance for which no Radius Face electrodes may be used
 0.010 to 0.031 — 2" Radius
 0.031 to 0.078 — 3" Radius
 0.078 to 0.125 — 4" Radius

0.031 to 0.078 – 3" Radius 0.078 to 0.125 – 4" Radius 6. | 3005 | 58 | 305 | 7900 | 28 | 29 | 20 | 305 | 300 | 3000 | 3000 | 31 | 37 | 37 | 3000 | 300 | 3000 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 |

| Fa 🎙 lw    |   | Electrode Force Fe | F <sub>e</sub> - Electrode Force (kN) Iw - Welding Current (kA) T - Time (ms) |
|------------|---|--------------------|-------------------------------------------------------------------------------|
|            |   | Welding Current Iw | \                                                                             |
|            |   | $\bigwedge$        |                                                                               |
| ①<br>Upper | 2 | 3 / 4              | Time T                                                                        |
| Electrode  |   | 0 0                |                                                                               |
|            |   |                    |                                                                               |
| Lower      |   | Fusion             | Weld Nugget                                                                   |

|            | Cyl.          |                      |              |             |               |              | _      |        |        |  |
|------------|---------------|----------------------|--------------|-------------|---------------|--------------|--------|--------|--------|--|
| Cyl.       | Area Sq.      | PRESSURE, PSI., GAGE |              |             |               |              |        |        |        |  |
| Diam. In.  | In.           | 30                   | 40           | 50          | 60            | 70           | 80     | 90     | 100    |  |
| 1          | 0.7854        | 24                   | 31           | 39          | 47            | 55           | 63     | 71     | 79     |  |
| 2          | 3.1416        | 94                   | 126          | 157         | 188           | 220          | 251    | 283    | 314    |  |
| 2.5        | 4.91          | 147                  | 196          | 245         | 295           | 344          | 393    | 442    | 491    |  |
| 3          | 7.07          | 212                  | 283          | 353         | 424           | 495          | 565    | 636    | 707    |  |
| 3.5        | 9.62          | 289                  | 385          | 481         | 577           | 673          | 770    | 866    | 962    |  |
| 4          | 12.57         | 377                  | 503          | 628         | 754           | 880          | 1,005  | 1,131  | 1.257  |  |
| 4.5        | 15.90         | 477                  | 636          | 795         | 954           | 1,113        | 1,272  | 1,431  | 1,590  |  |
| 5          | 19.64         | 589                  | 785          | 982         | 1,178         | 1,374        | 1,571  | 1,767  | 1.963  |  |
| 6          | 28.27         | 848                  | 1,131        | 1,414       | 1,696         | 1,979        | 2,262  | 2,545  | 2,827  |  |
| 7          | 38.49         | 1,155                | 1,539        | 1,924       | 2,309         | 2,694        | 3,079  | 3,464  | 3,848  |  |
| 8          | 50.27         | 1,508                | 2,011        | 2,513       | 3,016         | 3,519        | 4,021  | 4,524  | 5,027  |  |
| 9          | 63.62         | 1,909                | 2,545        | 3,181       | 3,817         | 4,453        | 5,089  | 5,726  | 6,362  |  |
| 10         | 78.54         | 2,356                | 3,142        | 3,927       | 4,712         | 5,498        | 6,283  | 7,069  | 7,854  |  |
| 12         | 113,10        | 3,393                | 4.524        | 5,655       | 6,786         | 7,917        | 9,048  | 10,179 | 11,310 |  |
| 14         | 153.94        | 4,618                | 6.158        | 7.697       | 9.236         | 10.776       | 12.315 | 13.854 | 15,394 |  |
| 16         | 201.06        | 6,032                | 8,042        | 10,053      | 12,064        | 14,074       | 16,085 | 18,096 | 20,106 |  |
| 18         | 254.47        | 7,634                | 10,179       | 12,723      | 15,268        | 17,813       | 20,358 | 22,902 | 25,447 |  |
| 20         | 314.16        | 9,425                | 12,566       | 15,708      | 18,850        | 21,991       | 25,133 | 28,274 | 31,416 |  |
| For Hydrau | lic pressures | , multiply           | pressure per | sq. in. and | resultant pre | essures by 1 | 0.     |        |        |  |